
1

Chief Technology Strategist

Notes Volume 1, Issue 4

April 2014

Office of Technology Strategies (TS)
Architecture, Strategy & Des ign (ASD)

This newly established office with-
in OIT’s Architecture, Strategy &
Design (ASD) interacts not only
with the ASD pillar offices, but also
with multiple stakeholders within
OIT and with strategic offices
across the enterprise. TS works
closely with IT and business own-
ers to capture business rules and
provide technical guidance as it
relates to Data Sharing across the
enterprise, specifically for inter-
agency operability.

A VA Executive’s Guide to the Application/Services Layer

INTRODUCTION

CTS Note #3 introduced Service Oriented

Architecture (SOA) and provided a general

description of how modern applications are

built with multiple “layers” often referred

to as the Presentation, Services and Data

Layers. This note dives deeper into the con-

cept of SOA by examining the Services Layer

in more detail.

BACKGROUND

The simple explanation of the Services Lay-

er is that it is the part of a modern applica-

tion that actually does all the work. It is

how Web pages are able to interact with

databases and where the majority of data

manipulations and calculations take place.

It is also the part of a system that does

most of the work to ensure the application

is secure.

In short, the Services Layer does all of the

heavy lifting. For example, when a user tries

to search for information in a modern appli-

cation, the Web pages that make up the

Presentation Layer—the pages in which

they enter search terms or click a link—

simply pass those search terms to the Ser-

vices Layer (See Figure 1). Behind the

scenes, multiple services do all the hard

work needed to fulfill the request: Where

does it search? How many answers will it

return? Is the user authorized to access the

answers?

SERVICES LAYER BENEFITS

Using discrete services to perform applica-

tions tasks completely independent of the

Presentation Layer provides many ad-

vantages, including:

 Elimination of point-to-point connec-

tions

 Reusability of shared services

Legacy applications built without this

“separation of concerns” into different

“layers” rely on multiple point-to-point

connections to other applications and data

stores. These interfaces require a lot of

time and resources to create, modify and

maintain. This makes modifying or adding

new functionality expensive, time consum-

ing and complicated.

With a Services Lay-

er, instead of each

application “hard-

coding” each of

those connections,

applications reuse

shared services that

are much less ex-

pensive to build,

operate and modify.

Figure 1 shows how a Veteran creates a new user account using web

services in an application services layer. A VA user reads the new user via

the same services layer, which interacts with the data layer so that neither

the Veteran nor the VA user needs to know the details of the data layer.

Applications that

use services can

simply mix and

match different ser-

vices from within

the Services Layer or

change the sequence in which they call

them, to rapidly provide users with new

and different capabilities. Additionally, new

applications can be built much more rapidly

by creating new Presentation Layers that

reuse existing services.

Decreased Time and Cost

The Services Layer provides the enterprise

with a set of reusable services, which mod-

ern applications access to perform any

number of necessary functions to provide

capability to users. This decreases the time

and cost to create custom functionality for

each distinct application.

Increased Information Agility

One of the key challenges VA faces in the

next five to 10 years is the ability to share

and use information, including information

from other federal or private entities. Ser-

vices allow an organization to access more

of its own data, and enable external appli-

cations to share or use common functionali-

ty and data.

Improved Security

Service Layer security offers an agile ap-

proach that focuses on the communication

(Continued on page 2)

2

A VA Executive’s Guide to the Application/Services Layer, cont’d

between systems (messages), and on spe-

cific services that interact with information

(end-to-end). The Services Layer can or-

chestrate multiple security services for one

interface (e.g., authenticating users as well

as encrypting data).

Figure 2 shows two different RESTful web service calls for finding user data. The left part

shows the output of an application making an HTTP POST operation to a VA server add a record

for Joe. The right part shows an HTTP GET operation to the same VA server for obtaining a

record for Joe.

HOW ARE SERVICES BUILT?

Enterprise services may be developed as

part of a specific project, but must be de-

signed to operate independent of any spe-

cific application. In VA, the majority of our

data is either created, read and modified by

many different applications, or,

(unfortunately) duplicated by them. This is

because many different VA users have simi-

lar business needs. Therefore, it is critical

that all services be built as potential

“shared services.”

User Requirements

Users generally think in terms of business

functionality and not in terms of the series

of discreet services sequenced in a particu-

lar order to achieve that functionality. This

makes it difficult to translate user require-

ments into service design. However, using

an Agile Development methodology to

break functional requirements into specific

and finite application functions makes doc-

umenting service requirements much easi-

er. Application developers need reusable

services to be truly “Agile” and SOA pro-

vides maximum benefit when used in an

Agile environment.

TYPES OF SERVICES IN THE SERVICES

LAYER

Create, Read, Update and Delete (CRUD)

Services: These are simple interactions be-

tween Presentation and Data Layers via the

Services Layer. One user may create, read

or modify (including delete), and another

user can view those changes when the rec-

ord is accessed. The service allows multiple

applications to modify a single set of data,

which can be immensely useful in work-

flows that rely on multiple systems.

Composite Services: These perform smaller

sets of tasks within a larger process. For

instance, if a user requests information, a

composite service will authenticate the

user with a separate data store before a

CRUD service returns the appropriate infor-

mation, ensuring they are authorized to

view that information. Composite services

can also help CRUD services return separate

data elements for the same user request

(e.g., savings and checking accounts in a

single online banking dashboard).

ADDITIONAL KEY CONCEPTS

Representational state transfer (REST): A

Web-service architecture in which services

are designed to focus on calling system

resources regardless of the state of those

resources (See Figure 2). This

“statelessness” improves Web service per-

formance by including all necessary infor-

mation in the RESTful Web service call. This

is a fast-growing alternative to more estab-

lished Web services, and is used by compa-

nies like Google and Facebook because it is

designed for mobile and Web applications

processing form-based data. In VA, we use

REST for similar purposes, specifically in

designing user interfaces and their interac-

tions with form-based information in the

Data Layer (e.g., DD 214).

Simple Object Access Protocol (SOAP): Pro-

vides a simple mechanism for sending infor-

mation in XML format over a network in

Web service interactions between applica-

tions. SOAP is not programming- or imple-

mentation-specific, meaning it can be used

in interactions between a variety of applica-

tions and systems. In VA, we use SOAP for

system-to-system interfaces that share

information that is not form-based.

Application programming interface (API): At

a basic level, APIs specify how software

components interact with each other. In a

Web service environment, the API is what

allows a user’s application to perform ac-

tions via a remote call to another system’s

components (e.g., search its data store).

If you have any questions about the Ser-

vices Layer, don’t hesitate to ask CTS

(askCTS@va.gov) for assistance or more

information. Check out earlier CTS Note

editions here (vaww.blog.va.gov/oit360).

Chief Technology Strategist

Notes Volume 1, Issue 4

April 2014

http://vaww.blog.va.gov/oit360/?tag=technology-strategies

