

VA Enterprise Design Patterns:

Cloud Computing

Microservices

Office of Technology Strategies (TS)

Architecture, Strategy, and Design (ASD)

Office of Information and Technology (OI&T)

Version 1.0

Date Issued: July 2016

THIS PAGE INTENTIONALLY LEFT BLANK FOR PRINTING PURPOSES

APPROVAL COORDINATION

Gary Marshall
Director, Technology Strategies, ASD

Paul A. Tibbits, M.D.
DCIO Architecture, Strategy, and Design

REVISION HISTORY

Version Date Organization Notes

0.1 3/11/2016 ASD TS Initial Draft/Outline

0.3 3/29/2016 ASD TS

Second draft document with updates made
throughout document based upon initial
internal/external stakeholder review and
comment.

0.5 5/9/2016 ASD TS

Updated draft for community review prior to TS
leadership approval/signature. Updates made
following Public Forum collaborative feedback
and working session.

0.7 6/28/2016 ASD TS
Updates made following Public Forum
collaborative feedback and working session.

1.0 ASD TS

Final version for TS leadership approval and
signature, including all applicable updates
addressing stakeholder feedback and Section 508
Compliance.

REVISION HISTORY APPROVALS

Version Date Approver Role

0.1 3/11/2016 Nick Bogden Enterprise Design Pattern Lead

0.3 3/29/2016 Nick Bogden Enterprise Design Pattern Lead

0.5 3/29/2016 Nick Bogden Enterprise Design Pattern Lead

0.7 6/28/2016 Nick Bogden Enterprise Design Pattern Lead

1.0 Nick Bogden Enterprise Design Pattern Lead

Page i

TABLE OF CONTENTS

1 INTRODUCTION ... 3

1.1 BUSINESS PROBLEM ... 3

1.2 BUSINESS NEED .. 3

1.3 BUSINESS CASE ... 3

1.4 APPROACH ... 4

2 CURRENT CAPABILITIES ... 5

2.1 LIMITED AGILITY ... 5

2.1.1 SDLC ... 5

2.1.2 Tight Coupling .. 5

2.1.3 Development and Operations .. 6

2.2 TECHNOLOGY LOCK-IN ... 6

2.3 IT INFRASTRUCTURE EVOLUTION .. 7

2.4 MICROSERVICES PROJECTS .. 9

3 FUTURE CAPABILITIES .. 9

3.1 MICROSERVICES PROJECT EVALUATION CRITERIA... 9

3.2 MICROSERVICES DESIGN CONSIDERATIONS .. 11

3.2.1 Decomposition of Business Requirements ... 11

3.2.2 Decomposition of VA Legacy Systems .. 11

3.2.3 Monitoring Services ... 12

3.2.4 Stateful vs. Stateless Design .. 12

3.2.5 Designing for Failure .. 13

3.2.6 Container Standardization ... 14

3.3 ASSESSING TOOLS TO UTILIZE MICROSERVICES .. 14

3.3.1 Containers-as-a-Service (CaaS) .. 14

3.3.2 Microservices Testing ... 15

3.3.3 Secure Registry ... 16

3.3.4 Management Capabilities .. 16

3.3.5 Microservices and Container Workflow ... 17

3.4 SUMMARY OF PRINCIPLES ... 18

3.5 MICROSERVICES RISKS .. 18

3.6 ALIGNMENT TO TRM ... 19

3.7 ALIGNMENT TO VETERAN-FOCUSED INTEGRATION PROCESS (VIP) .. 20

4 USE CASES ... 20

4.1 USE CASE #1 – GREENFIELD DEVELOPMENT ... 20

4.2 USE CASE #2 – BROWNFIELD DEVELOPMENT ... 22

APPENDIX A. DOCUMENT SCOPE ... 25

APPENDIX B. DEFINITIONS ... 26

APPENDIX C. ACRONYMS ... 27

APPENDIX D. REFERENCES, STANDARDS, AND POLICIES .. 29

Page ii

FIGURES

Figure 1 - “As-Is” eMI Architecture ... 8

Figure 2 - Microservice Evaluation Criteria ... 10

Figure 3 - Microservices Testing Pyramid ... 15

Figure 4 - “To-Be” Microservices and CaaS Workflow .. 18

Figure 5 - Use Case #1 ... 21

Figure 6 - Use Case #2 ... 23

TABLES

Table 1 - Summary of Principles.. 18

Table 2 - Microservice Adoption Risks .. 19

Table 3 - TRM Approved Standards and Technologies ... 19

Table 4 - Acronyms.. 27

Table 5 - References, Standards, and Policies .. 29

Page 3

1 INTRODUCTION

1.1 BUSINESS PROBLEM

The majority of existing Veterans Affairs (VA) applications consist of full-stack, monolithic

architectures with limited flexibility to changing business needs. Monolithic applications

present the following challenges:

1. Limited agility – Continuous deployment is difficult, forcing developers to redeploy the
entire application (e.g. WAR files) in order to update one component

2. Technology lock-in – Changes cannot be made to part of the application code, meaning
all of it has to be modified

3. IT infrastructure evolution – Decomposition of monolithic applications into
microservices is inhibited by limited availability of Commercial-off-the-shelf (COTS)
platforms to perform networking and orchestration

Many existing VA software solutions were built using traditional waterfall approaches. The

sequential nature of the waterfall approach presents challenges to rapidly changing business

needs and reduced development timeframes.

1.2 BUSINESS NEED

With the adoption of cloud-native DevOps and the need to deliver IT capabilities in an

expedited manner, monolithic applications present challenges to keeping up with rapidly

changing business needs. For example, a monolithic application has presentation, business, and

data logic located in a single, logical package that is deployed in resource-intensive application

servers. Minor changes to part of the architecture require testing and redeployment of the

entire package. Software systems developed in a monolithic fashion do not have the flexibility

to modify or add new features without a re-design of the whole application.

1.3 BUSINESS CASE

Microservices address the limitations of monolithic architectures. To help standardize

microservice architectures at VA, this Enterprise Design Pattern (EDP) provides a VA-specific

definition for microservices. A microservice provides a single business function with the

following characteristics:

 Fine-grained: Encompasses a specific service component that delivers an individual
business capability (e.g. provide current patient prescriptions)

 Loosely coupled: Functions with little or no knowledge of other business functions;
thereby limiting or removing the impact of changes made to one business function on
other functions with which it interfaces with

Page 4

 Independently deployable: Can be used by multiple applications or systems; self-
contained by running its own isolated processes and computations

 Vendor-neutral: Leverages open standards for inter-process communication (e.g. HTTP)
with other services

Service Oriented Architecture (SOA), as defined in the SOA Enterprise Design Pattern, provides

a framework of general design principles for services, while microservices represent an

implementation of that framework for specific services. For the context of this document,

microservices are best described as “fine-grained SOA” consistent with industry best practices

for DevOps.

VA has begun to address the challenges of rapidly changing business needs and reduced

development timeframes by embracing agile software development practices with its

continued emphasis on consolidating IT infrastructure and use of enterprise IT services,

including Enterprise Shared Services (ESS) and cloud-based solutions. In concert with these

changes, VA will adopt a microservices architectural style leveraging agile development

techniques for both existing and new software projects.

1.4 APPROACH

The near-term approach to incorporate microservices into existing and future VA software

systems is as follows:

1. Determine enterprise standard criteria for microservices approach
a. Criteria for using microservices for new applications (Greenfield)
b. Criteria for functional decomposition of legacy systems or integration of new

applications with legacy systems (Brownfield)
2. Disseminate criteria to project teams for review prior to first project decision review
3. Re-evaluate criteria through lessons learned from previous microservice enabled

projects

Performed concurrently with 1 and 2 above:

4. Conduct market research on COTS platforms (including open-source) for supporting a
microservices architecture

5. Acquire and deploy COTS platforms for use in the DevOps community
6. Include approved COTS platforms in Technical Reference Model (TRM)
7. Direct usage of COTS platforms through the TRM
8. Re-evaluate product usage through lessons learned from previous microservice enabled

projects

Page 5

2 CURRENT CAPABILITIES

VA’s current monolithic architecture encompasses a waterfall software development life cycle

(SDLC), tight coupling of systems, segmented development and operations, vendor lock-in, and

large SOA infrastructure services. It also includes an enterprise service bus (ESB), which focuses

more on the central infrastructure than the application itself. These issues are addressed

further in the following sub-sections.

2.1 LIMITED AGILITY

2.1.1 SDLC

Capabilities: VA application development is categorized as in-house or through contractors. In-

house and contractor application development was traditionally developed using a waterfall or

incremental SDLC. For example, within Veterans Health Administration (VHA), contractors

typically develop critical applications. Contractor-developed and in-house applications have the

option of utilizing their own environment or VA’s development environment (i.e. Mobile

Application Environment). Either event requires the final application to be uploaded to the VA

environment for compliance review.

VA has recently revamped the IT delivery framework, which follows a lean-agile framework,

bringing greater agility to VA’s SDLC (see Section 3.7). VA is transitioning to the agile software

development environment and has initiated pilot software projects that are diverse in terms of

scope, size/complexity, customers, and stages in the project lifecycle.

Limitation(s): A combination of factors, including the agile initiatives and the enterprise-cloud

migration, calls for SDLC that can provide timely business value to VA and occur in an efficient

manner. Adhering to the new framework helps VA transition to an agile environment capable of

handling changing business needs. While VA has a new IT delivery framework in place, the

limitations associated with the previous framework still exist. The new IT delivery framework

only addresses future projects.

2.1.2 Tight Coupling

Capabilities: Many of the existing VA applications require a high level of interdependence in

order to function properly. The complexity to build new capabilities or address existing issues in

operational systems is significant due to these interdependencies. For instance, the VistA

Access Enhancements (VAE) team has described their effort as a “complex environment, with

many moving pieces.”

Limitation(s): Traditional monolithic design amplifies and enhances the coupling of systems. A

higher degree of coupling leads to increased challenges in extending or making changes to an

existing system. The problems are exacerbated as the systems become larger. As a result the

Page 6

easiest way to extend tightly coupled systems is to incorporate even more interdependence

among the systems. In a tightly coupled architecture, the high interdependence of systems can

lead to a single point of failure that can potentially crash the whole system.

Capabilities: Library sharing is a good design approach to modularize different domains into

separate libraries. This allows application code that fall under a common domain to share code

libraries. This is done within systems and among systems at VA.

Limitation(s): While shared libraries are not incompatible with a service-based approach it does

not provide many of the benefits of microservices. Using a different language or platform is

difficult when libraries are used as the only form of modularization. This practice limits

solutions for specific domains, does not enable the advantages of process isolation, and cannot

scale independently as load requires. Shared libraries also mean shared or planned releases,

which creates dependencies on process releases across teams.

2.1.3 Development and Operations

Capabilities: Development, operations, and quality assurance of VA applications is segmented.

This is apparent across VA Lines of Business (LOBs), including the Veterans Benefits

Administration (VBA). As part of the DevOps/Benefits Transformation, a study was performed

to identify existing challenges with VBA’s SDLC. VBA discovered differences in the development

and operations environments that caused failures, affecting the Veteran’s ability to access VA

services and benefits.1 Once an application is released there is only a three-month support

period from the development team. After this period, all maintenance and operation becomes

the responsibility of the business owner of the application.

Limitation(s): The VA IT ecosystem consists of multiple systems and teams that do not always

coordinate together. The current segmented nature prevents an enterprise that integrates

development, deployment, and oversight to ensure efficient use of resources.

Large software project development teams working with monolithic architectures encounter

inefficiencies as the software is not designed in a modular fashion. It inhibits developers to

work concurrently on a common component.

2.2 TECHNOLOGY LOCK-IN

Capabilities: The VA development tools and integrated development environments (IDEs) are

geared toward single application development guided by monolithic architectures. Since

1VA. (2013) Business Requirement Session (DEVOPS/Benefits Transformation)

Page 7

monolithic architectures are tightly coupled, any changes made to one part of the architecture

affects the entire application. This makes it difficult to utilize different technologies that are

better suited for the job when making changes or updates to an existing application.

Limitation(s): Monolithic applications often cannot scale with changes to size and complexity

and therefore are not aligned with VA’s transition towards agile development. Usually,

incorporating changes to one part of the architecture requires a redesign or update to the

entire architecture. As a result, updating the application with a new framework would require a

redesign, potential schedule delays, or increased cost. Therefore, VA would be committed

strictly to the technology decisions made in the initial stages of the lifecycle.

2.3 IT INFRASTRUCTURE EVOLUTION

Capabilities: The Enterprise Messaging Infrastructure (eMI) delivers customized COTS suite of

tools to provide a reliable, secure, high-performance, and globally scalable SOA information

exchange system. As the official SOA infrastructure backbone for ESS per the (Enterprise

Architecture) Enterprise SOA EDP, all projects are mandated to use eMI for integration with

ESS. The eMI delivers a network-centric infrastructure that enhances service delivery and

security, allowing VA to efficiently share and communicate information. The “As-Is”

architecture for eMI consists of several key components depicted in Figure 1.

Page 8

Figure 1 - “As-Is” eMI Architecture2

At the core of the eMI is an ESB messaging engine supported by a security gateway and

sophisticated routing services that provide a transfer of messages between services. VA

currently has deployed a national ESB as a key component of the IT infrastructure. This provides

messaging functions, such as routing and protocol transformation, using a common set of

messaging standards as described in the ESS Message Exchange Guide.

Limitation(s): VA’s adoption of ESS to realize an enterprise SOA is still a work in progress.3 A key

component of any enterprise’s SOA environment, including VA, is the ESB. With the ESB,

developers are encouraged to put more cross-cutting logic into the central infrastructure and

less into the services and the applications that consume them. This structure results in heavy

dependence on the ESB for non-functional requirements (e.g. security, monitoring, and

mediation), and even some business logic. The use of ESBs increases dependencies of services

on the infrastructure and results in greater coupling.

2http://vaww.oed.portal.va.gov/communities/VAeMI/eMI%20WIKI/eMI%20SOA%20Environm
ent.aspx
3VA. (2015) Enterprise SOA Design Pattern

Page 9

2.4 MICROSERVICES PROJECTS

VA has a limited number of projects in the design phase that propose utilizing microservices

architecture. These projects include the Enterprise Health Management Platform (eHMP)

Clinical Practice Environment - VistA Exchange and Application Programming Interface (API) 2.0

projects that are part of the VistA Evolution program.4,5 These projects, along with the guidance

from this document, will help establish the use of microservices for future VA projects.

3 FUTURE CAPABILITIES

This section contains guidelines for when to implement microservices architecture and

recommendations for how to do so. The future state of VA will enable the use of microservices

to promote agile methodologies, avoid technology lock-in, and incorporate more business logic

into the application, instead of the infrastructure. Guidance and recommendations mostly

originate from industry best practices.

3.1 MICROSERVICES PROJECT EVALUATION CRITERIA

The following flow chart helps guide the project team on whether to implement microservices

or not.

4VA. (2014) eHMP System Design Document Increment 1 and 2
5VA. (2015) VistA API 2.0 CDO Design Pattern Analysis and Recommendation

Page 10

 New software
development project

 No integration with
legacy systems

Start

 Re-designing/adding
new capabilities to
part of an existing
application

Utilize microservices architecture

 Re-design entire
architecture of an
existing application
using microservices

Do not implement microservices

YES NO

 New software
development project

 Integration with
legacy systems

Perform feasibility analysis

Does LOE required to
decompose/transition support

feasibility analysis?

Figure 2 - Microservice Evaluation Criteria

When performing the feasibility analysis, project teams will consider evaluation methodology

such as:

 Can service(s) be traced to specific business/mission requirements?

 Can service(s) be exposed with an API gateway? Can the API gateway handle the
increased load?

 Can service(s) be deployed on a separate infrastructure that is isolated from the
monolith?

As part of the Level of Effort (LOE) analysis, a roadmap can be developed that takes into

consideration: anticipated costs, duration, and resource needs.

Page 11

3.2 MICROSERVICES DESIGN CONSIDERATIONS

3.2.1 Decomposition of Business Requirements

For new application development, service profiling should be used as a method for architecting

a microservice solution. Service profiling refers to the initial phase of the microservices design

process where project teams decompose services that will be offered and assembled. Project

teams will identify which new services are to be built and ensure that these applications

strongly align to documented and approved business use cases as well as the existing VA

enterprise architecture. Focusing on the mission alignment at the start of the lifecycle enables

VA teams across different VA departments to synchronize accordingly. This reduces resource

inefficiencies by preventing duplication of work resulting from the lack of communication or

collaboration between VA teams using monolithic architecture approaches.

The following steps describe how to implement a new application centered on the use of

microservices:

1. Project teams break down service needs via enterprise architecture and mission
requirements which set standards for the information needed from the service at the
atomic or business level

2. Project teams leverage a fine-grained scope at the atomic service level, taking into
consideration only the optimal amount of information needed to make the service
usable, reusable, portable, and distributable

3. Project teams create a Service Level Agreement (SLA) for the atomic services that
specifically states the protocols and functionality the services will provide

4. At the business level, project teams focus on services that require integration of
multiple attributes

5. When approaching microservices at the enterprise level, VA organizes technical teams
based on what enterprise service needs to be delivered

Utilizing the business needs to identify capabilities suited for microservices helps address the

following problem.

Problem(s) Addressed: Limited Agility

3.2.2 Decomposition of VA Legacy Systems

For monolithic applications where all capabilities are integrated together, the following steps

dictate how to assess and decompose VA legacy systems into re-usable microservices:

1. Determine capabilities from the application that can be separated and moved to
separate microservices. The microservice should be designed to be modular and
accomplish a single capability to enhance unit testing and performance verification. The
following types of capabilities are well suited for microservices, either for legacy systems
or new applications:

Page 12

a. User or account information
b. Authorization and session management
c. Preferences or configuration settings
d. Notifications and communications services
e. Photos and media, especially metadata

2. Identify service classes which utilize create, retrieve, update, and delete (CRUD)
interfaces and business logic layers that do not have dependencies on other classes. The
microservices from the service layer expose the data services from the VA data layer.
The interfaces of these services are used to perform the CRUD operations on data.

3. Perform re-factoring within legacy codebase and deploy it to production.
4. Define in the SLA, the protocols and functionality the services provide.

The capabilities suited for decomposition of VA legacy systems into microservices help address

the following problem.

Problem(s) Addressed: Limited Agility

3.2.3 Monitoring Services

VA will monitor services, taking into consideration the status and performance of the individual

microservices, while verifying that the whole application meets user expectations. VA will

collect service health reports, and in instances when services are not performing as required,

identify and resolve the impact on scaling. This information will be collected and processed in

accordance with the Data Analytics EDP to improve the performance and identify microservices

that may need redesign. VA will institute an activity monitoring framework capable of tracking

logins across platforms in accordance with the Enterprise Auditing EDP.

Incorporating monitoring of microservices on an individual and collective perspective helps

address the following problems.

Problem(s) Addressed: Limited Agility, IT Infrastructure Evolution

3.2.4 Stateful vs. Stateless Design

When utilizing microservices, it is important to understand which type of design is best suited

for an application. Stateless microservices do not maintain any internal state between requests

and rely on an external data store for data persistence. Stateful microservices maintain an

internal state between requests with an internal data store. Stateless microservices are best

used for web front-ends, protocol gateways, and cloud services, while stateful services are best

for databases, documents, user profiles, and shopping carts. Stateless microservices are more

agile and scalable, minimizing the need to make significant changes or reconfigurations to the

application. However, in instances of data intensive applications, stateful services provide data

locality, which lowers latency and offers better performance. In general, stateless microservices

Page 13

should be utilized whenever possible, however, there are some instances where a stateful

service design is better.

Regardless of the design, each microservice will utilize the VA data layer for its data storage

needs. This can lead to applications that utilize several different data storage types depending

on the microservices utilized and the criteria of the application. The VA data layer provides

access to all of VA’s data storage options. The type of data storage utilized depends primarily on

the following three criteria: data temperature, data structure, and concurrency support. Data

storage options are detailed in the Data Storage EDP.

The combination of stateful and stateless microservices design coupled with the use of the VA

data layer addresses the following problems.

Problem(s) Addressed: Limited Agility, IT Infrastructure Evolution

3.2.5 Designing for Failure

While microservices are designed to be small and well-tested, it is important to design them to

handle failure (i.e. network latency, data centers shutting down, or other microservice failures).

Automatic failure handling techniques, such as the circuit breaker pattern, detect failure and

prevent an application from trying to reiterate an action which is likely to fail.6 A circuit breaker

acts as a discovery service, ensuring that one microservice can identify when another

microservice is down and immediately notify the main circuit breaker. This allows the

microservice to check the circuit breaker of the microservice it is connected to, and determine

if it is broken. If it is broken, the circuit breaker can prevent calls being made to or from that

particular microservice.

Another option is having a central logging microservice, which can receive log messages from

other microservices for inspection and searching, which would be done through a correlation

token created by an API gateway. Regardless of the method, each microservice will have a

method for mitigating unforeseen failures.

By incorporating mechanisms to address microservice failures the following problem is

addressed.

Problem(s) Addressed: Limited Agility

6https://martinfowler.com/bliki/CircuitBreaker.html

Page 14

3.2.6 Container Standardization

As OS-level virtualization container technology is still maturing, it is important for VA to adopt

the standards developed from industry. One organization in particular, the Open Container

Initiative (OCI), is an open governance structure for creating open industry standards around

container formats, container management, and runtime. OCI is leading the effort in container

standardization.7

VA will utilize containers deployed through a commercial Platform-as-a-service (PaaS) provider.

Leveraging a commercial PaaS allows VA to avoid the complexity of building and maintaining

the infrastructure associated with developing and launching an application. Refer to the PaaS

EDP for further information.

By adhering to industry container standards and leveraging commercial PaaS the following

problems are addressed.

Problem(s) Addressed: Limited Agility, Technology Lock-in

3.3 ASSESSING TOOLS TO UTILIZE MICROSERVICES

3.3.1 Containers-as-a-Service (CaaS)

VA requires a CaaS COTS platform approved for use in the Technical Reference Model (TRM).

CaaS addresses the challenges associated with microservices and enables applications to be

distributed on multiple platforms. CaaS also addresses the limitations VA currently encounters

with its monolithic applications.

 Agility – Shortens the duration between software release cycles that VA requires by
aligning with sprint cycles

 Portability – Provides the means to package the application and dependencies together
making the container a complete and independent unit, allowing containerized
applications to seamlessly transition from the development phase to the testing phase
to production

 Control – Allows for standardization of the application environment with native tooling
to manage the infrastructure and applications’ unifying VA’s heterogeneous set of
infrastructure, code bases, and systems

Uses of CaaS address challenges associated with microservices and help address the following

problems.

7https://www.opencontainers.org/

Page 15

Problem(s) Addressed: Limited Agility, Technology Lock-in, IT Infrastructure Evolution

3.3.2 Microservices Testing

When testing microservices, it is important to formulate an effective testing strategy that can

provide support at every layer of testing. A key factor in defining a good test strategy is to

identify the right amount of testing for each point in the test lifecycle. The following diagram

depicts a bottom-up approach of the four phases of testing according to the testing pyramid.8

Figure 3 - Microservices Testing Pyramid

The unit testing phase consists of the largest volume of tests. All tests should be automated,

depending on the development language and framework used in the service. There are two

methods of contract testing. The correct method depends on the end goal of the microservice

and how the interfaces with consumers are defined. The first method is integration contract

testing, where a test double (mock or stub) replicates a service that is to be consumed and

must be verified with the real service to ensure consistency. The other method is consumer-

driven contract testing, where consumers define how they consume the service through

customer contracts.

8Infosys. (2016) White Paper – An Insight into Microservices Testing Strategies

Page 16

The next phase is integration testing, which leverages a testing environment where individual

microservices can be integrated before deployment. VA’s Enterprise Development Environment

(EDE) has developed a test environment referred to as the EDE Azure External Environment.

This environment can be leveraged as a proving ground when building out microservices and

integration testing. End-to-end testing is best served in situations where there is an interface to

an externally-exposed service and the developer of the service provides a testing or "sandbox”

version.

A structured testing framework combined with the use of VA’s testing environment helps

address the following problems.

Problem(s) Addressed: Limited Agility, IT Infrastructure Evolution

3.3.3 Secure Registry

VA will utilize a COTS product for registering microservices, and will include open source

solutions for service discovery. VA will ensure that an open source environment is enabled by

maintaining a consistent container format, regardless of vendor, and eliminating restrictions on

destinations and orchestration layers. VA will make portable microservices applications for the

purposes of maintaining flexibility with the wide portfolio of industry orchestration tools and

selecting the best fit for managing run time. At the deployment phase, VA will share proven

microservices applications throughout the VA infrastructure to promote reuse. In applying

microservices applications across the VA infrastructure, security throughout different

environments is imperative. VA will ensure that data remain isolated between environments for

independent applications. As important, operator-access permissions across teams will be

bounded based on the need to access or collaborate with a corresponding environment.

A registry for secure storage, management, and distribution of microservices helps address the

following issue.

Problem(s) Addressed: IT Infrastructure Evolution

3.3.4 Management Capabilities

VA will employ management capabilities to achieve automation and mitigate downtime of

microservices. VA will receive performance notifications, and when performance is lagging, will

respond with an automated repair process to streamline setup of the microservices. VA will also

leverage automation in the microservices architecture deployment process to ensure accurate

and streamlined testing. VA will implement backwards compatibility along with rolling upgrades

for the purposes of mitigating outages when enhancements are made on the microservices.

Version control of microservices will also need to be instituted.

Page 17

VA will utilize API management for microservices. API management is based on the enterprise

architecture and mission requirements, and regulates the external services that can call the

APIs, the instances which they can call the APIs, and the protocols used to call the APIs. VA will

collect metrics on API usage to identify the source of API calls as well as any occurrence of

latency.

The use of management tools to track performance and manage APIs helps address the

following problems.

Problem(s) Addressed: Limited Agility, IT Infrastructure Evolution

3.3.5 Microservices and Container Workflow

Figure 4 below depicts the “To-Be” workflow, describing how microservices and containers

integrate into VA’s SDLC. Small development teams build, test, and deploy individual

microservices utilizing the best codebase to suit their needs. Images are developed and sent to

the registry for secure storage, management, and distribution. Management capabilities of IT

operations will provision and manage infrastructure resources (e.g. cloud based and/or on-

premises). IT operations will also have monitoring capabilities to manage and scale

infrastructure and applications as needed.

IT OperationsDevelopers

Build Ship Run
Development Environments Registry: Secure Content &&

Collaboration

Control: Deploy, Manage, Scale

Page 18

Figure 4 - “To-Be” Microservices and CaaS Workflow

Integrating microservices and CaaS into VA’s SDLC help address the following problems.

Problem(s) Addressed: Limited Agility, Technology Lock-in, IT Infrastructure Evolution

3.4 SUMMARY OF PRINCIPLES

The following table summarizes the six key principles to leverage the full value of microservices.

These guiding principles are applicable to both SOA and microservices.

Table 1 - Summary of Principles

Requirements Description

SLA

The service provider uses the contract to express the purpose of
the microservice and its requirements. It is important that VA’s
microservices architecture supports different data formats and
transportation protocols without re-building services repeatedly.

Exposing microservices
from existing applications

VA can either build completely new services or expose parts of
existing applications as a microservice. Separating the transport
logic from the service logic is a best practice.

Service discovery VA must discover and use other services, to be published via an
API gateway. Details of the API gateway are documented in the
Secure Messaging EDP.

Coordination across
services

Combining services in a higher level logic serve as applications or
business processes, proves to be faster to develop and easier to
maintain.

Managing complex
deployments and scalability

Automation is key for an agile, flexible, and productive
microservices environment. It is important to administer and
monitor all VA microservices with a central user interface, and to
choose a specific scalable, fault-tolerant, performant runtime for
VA specific projects.

Visibility across services After deploying and running microservices in production, VA
should combine events, context, and insights from different
services for instant awareness and event correlation.

3.5 MICROSERVICES RISKS

In addition to the design considerations presented in this section, project teams must also

consider the risks associated with microservices as highlighted in the following table.

Page 19

Table 2 - Microservice Adoption Risks

Risk Description

Migrating data on a live
application

Data migration on a live application is situation-dependent and
can result in newer data being overwritten with older data.

Performance overhead The gains in code deployment and operation independence from

microservices also bring greater traffic to the network.

 More connection points

 Load balancing

 Firewall and port management at fine-grained level will

be more tedious unless broadly scoped

Multiple message formats impact scanning and inspection.

Data segmentation If improperly designed, microservices can form information
barriers.

Developer responsibilities Developers need great understanding and participation in
operations and productions. Microservices-based applications
are tightly integrated into their environmental contexts.

More interfaces Maintaining the SLAs between microservices is important. A
change in syntax or semantics to one side of the contract
requires all other services to understand that change.

3.6 ALIGNMENT TO TRM

All components of VA’s “To-Be” microservices architecture will use approved technologies and

standards located in the VA TRM to comply with the architectural guidance provided in this

document. VA will evaluate new technologies, particularly those provided by commercial cloud

service providers, and those approved for enterprise consumption will be catalogued in the

TRM. The following table highlights the standards profile and approved technologies for

microservices.

Table 3 - TRM Approved Standards and Technologies

Tool Category
Example Approved Standards and

Technologies

 Application Server Software  GlassFish, Weblogic Server

 Web Server Software  Apache Tomcat, IBM HTTP Server

Load and Performance Testing
Tools

Apache JMeter

Page 20

 System Testing Tools  HP Fortify On-Demand

Build and Deployment Tools
Docker, Jenkins Continuous Integration
Server

Application Development Tools
Eclipse WebTools Platform, XML, HL7
API, HTML, JavaScript, Node.js, Swagger

 Development Frameworks
 Java API for RESTful Web Services,

Microsoft .NET Framework, Python

Enterprise Service Bus eMI

 Service Registry
 WebSphere Service Registry and

Repository

 SOA Governance  CA API Gateway

 Load Balancing and Failover  EMC PowerPath

Cloud Technologies OpenStack

Virtualization Software
Citrix Receiver, Red Hat Enterprise
Virtualization, VMWare

3.7 ALIGNMENT TO VETERAN-FOCUSED INTEGRATION PROCESS (VIP)

The Veteran-focused Integration Process (VIP) is a Lean-Agile framework that services the

interest of Veterans through the efficient streamlining of activities that occur within the

enterprise. The VIP framework unifies and streamlines IT delivery oversight, delivering IT

products more efficiently, securely, and predictably. VIP is the follow-on framework from

Project Management Accountability System (PMAS) for the development and management of

IT projects, which will rigorously propel the Department toward Veteran-focused delivery of IT

capabilities.

More information can be found here.

4 USE CASES

The following use cases are examples that demonstrate the application of the capabilities and

recommendations described in this document.

4.1 USE CASE #1 – GREENFIELD DEVELOPMENT

The Greenfield use case describes the high level architecture when microservices are utilized

for new applications. An assessment of the baseline monolithic system is not applicable and

therefore no refactoring or decomposition is required. Technical teams develop and scale the

services independently.

Assumptions

https://vaww.oit.va.gov/veteran-focused-integration-process-vip-guide/

Page 21

 New development effort with no dependencies on baseline systems

 Service profiling is complete and approved prior to development (see section 3.2.1)
o The application has a specific scope and an established alignment to enterprise

architecture mission/business requirements
o Teams have been staffed by considering the objective of the services

Use Case Description

The use case for a Greenfield microservices architecture is displayed in Figure 5.

Service Management/Orchestration Layer

API Gateway

Consuming
Applications

Services Layer

Domain Specific
Microservices

ESS
Microservices

VA Firewall

Firewall

VA
Enterprise

VA Data Layer

Figure 5 - Use Case #1

The steps for the Greenfield use case are as follows:

1. Consuming applications access VA services through the VA firewall
2. The API gateway lies between two firewalls that form a demilitarized zone (DMZ)

Page 22

3. All microservices will be registered with the API gateway
4. The services management/orchestration layer provides the ability to utilize

microservices to deploy and manage applications to many environments
5. The services layer contains all VA microservices, including domain specific and ESS

microservices
6. The microservices will utilize the VA data layer containing the Enterprise CRUD (eCRUD)

which provides access to the data lake, authoritative data sources (ADS), non-ADS, VA
data warehouse, and archival data storage. Further information on the VA data layer is
addressed in the Hybrid Data Access EDP.

4.2 USE CASE #2 – BROWNFIELD DEVELOPMENT

This Brownfield use case describes the high level architecture when certain capabilities of

legacy systems have been extracted and made into microservices or the entire legacy system is

redesigned.

Assumptions

 Level of effort for decomposing the baseline system or transitioning the entire system is
approved

 Decomposition has identified small/specific services that can be easily tested (see
Section 3.2.2)

 Decomposition has identified and removed dependencies among service classes and
codebase (see Section 3.2.2)

Use Case Description

The use case for a Brownfield microservices architecture is displayed in Figure 6.

Page 23

Service Management/Orchestration Layer

API Gateway

Consuming
Applications

Legacy Systems

Services Layer

Domain Specific
Microservices

ESS
Microservices

VA Firewall

Firewall

VA
Enterprise

VA Data Layer

Figure 6 - Use Case #2

The attributes for the Brownfield microservices use case are as follows:

1. Consuming applications access VA services through the VA firewall
2. The API gateway is situated in between two firewalls that form a DMZ
3. All legacy systems and microservices will be registered with the API gateway
4. The services management/orchestration layer provides the ability to utilize

microservices in combination with legacy systems to deploy and manage applications to
many environments. This layer handles the communication between the microservices
and the legacy systems.

5. The services layer contains all the VA microservices including domain specific and ESS
microservices as well as services offered by VA’s legacy systems

Page 24

6. The microservices will utilize the VA data layer containing the eCRUD, which provides
access to the data lake, ADS, non-ADS, VA data warehouse, and archival data storage

Page 25

APPENDIX A. DOCUMENT SCOPE

Scope

This Enterprise Design Pattern establishes a framework that incorporates microservices into the

architecture for both existing and new applications to support agile initiatives outlined in the

Veteran-focused Integration Process (VIP). Topics include:

 Evaluating software projects suitable for microservices

 Microservices architecture
o Deployment considerations: Containers and VMs
o Hosting environments: Regional Data Centers vs. Cloud based
o Integration with existing VA IT infrastructure, including mobile infrastructure

 Assessing strengths and weaknesses of microservices for VA compared to traditional

monolithic application architectures

Topics outside the scope of this Enterprise Design Pattern, but may be referenced, are:

 Cloud Broker

 Traditional SOA infrastructure middleware (e.g. ESB)

 Implementation details about specific COTS products used to implement microservices
and containers

 Details regarding privacy and security

Intended Audience

The primary audience for this document consists of VA stakeholders who support the agile

DevOps community involved in the development and deployment of new VA software

solutions. It is also intended for IT modernization projects involving a functional decomposition

of monolithic systems into loosely coupled functions.

Document Development and Maintenance

Internal stakeholders from across the Department, including participants from VA’s Office of

Information and Technology (OI&T), Product Development (PD), Office of Information Security

(OIS), Architecture, Strategy and Design (ASD), and Service Delivery and Engineering (SDE)

collaboratively developed this document. Extensive input and participation was also received

from VHA, VBA and National Cemetery Administration (NCA). In addition, the development

effort included engagements with industry experts to review, provide input, and comment on

the proposed pattern. This document contains a revision history and revision approval logs to

track all changes. Updates will be coordinated with the Government lead for this document,

which also facilitate stakeholder coordination and subsequent re-approval depending on the

significance of the change.

Page 26

APPENDIX B. DEFINITIONS

Atomic Service - A mechanism to enable access to a single purpose capability, where the access
is provided using a prescribed interface and is exercised consistent with constraints and policies
as specified by the service description.

Enterprise Shared Service - A SOA service that is visible across the enterprise and can be
accessed by users across the enterprise, subject to appropriate security and privacy restrictions.

http://vaww.ea.oit.va.gov/enterprise-shared-services-service-oriented-architecture/

Service Oriented Architecture - A paradigm for organizing and utilizing distributed capabilities
that may be under the control of different ownership domains. It provides a uniform means to
offer, discover, interact with and use capabilities to produce desired effects consistent with
measurable preconditions and expectations.

http://vaww.ea.oit.va.gov/enterprise-shared-services-service-oriented-architecture/

Page 27

APPENDIX C. ACRONYMS

Table 4 provides a list of acronyms that are applicable to and used within this Enterprise Design

Pattern document.

Table 4 - Acronyms

Acronym Description

ADS Authoritative Data Sources

API Application Programming Interface

ASD Architecture, Strategy and Design

CaaS Containers-as-a-Service

COTS Commercial-off-the-Shelf

CRUD Create, Retrieve, Update, and Delete

eCRUD Enterprise CRUD

EDE Enterprise Development Environment

eHMP Enterprise Health Management Platform

eMI Enterprise Messaging Infrastructure

ESB Enterprise Service Bus

ESS Enterprise Shared Services

ETA Enterprise Technical Architecture

ETSP Enterprise Technology Strategic Plan

IDE Integrated Development Environment

IT Information Technology

LOB Line of Business

LOE Level of Effort

NCA National Cemetery Administration

OI&T Office of Information and Technology

OIS Office of Information Security

PaaS Platform-as-a-Service

SDE Service Delivery and Engineering

SDLC Software Development Lifecycle

SLA Service Level Agreement

SOA Service-Oriented Architecture

TRM Technical Reference Model

TS Office of Technology Strategies

VAE VistA Access Enhancements

VBA Veteran Benefits Association

VHA Veteran Health Administration

VIP Veteran-focused Integration Process

Page 28

Acronym Description

VistA Veterans Health Information Systems and Technology
Architecture

WAR Web Application Archive

Page 29

APPENDIX D. REFERENCES, STANDARDS, AND POLICIES

This Enterprise Design Pattern is aligned to the following VA OI&T references and standards
applicable to all new applications being developed in the VA, and are aligned to the VA ETA:

Table 5 - References, Standards, and Policies

Issuing

Agency

Applicable Reference/ Standard Purpose

1 VA VA Directive 6551 Establishes a mandatory policy for

establishing and utilizing Enterprise

Design Patterns by all Department of

Veterans Affairs (VA) projects

developing information technology (IT)

systems in accordance with the VA’s

Office of Information and Technology

(OI&T) integrated development and

release management process, the

Veteran-focused Integration Process

(VIP).

http://www.techstrategies.oit.va.gov/do

cs/designpatterns/6551dir16.pdf

2 VA OIS VA 6500 Handbook Directive from the OI&T OIS for

establishment of an information security

program in VA, which applies to all

applications that leverage ESS.

3 VA OI&T Veteran Focused Integration
Process Guide 1.0

The Veteran-focused Integration Process
(VIP) is a Lean-Agile framework that
services the interest of Veterans through
the efficient streamlining of activities
that occur within the enterprise.

4 NIST NIST Definition of Microservices,
Application Containers and System
Virtual Machines

Provides a NIST-standard definition to
application containers, microservices
which reside in application containers
and system virtual machines.

		2016-07-19T09:44:13-0400
	PAUL A. TIBBITS 116858
	I am approving this document.

		2016-07-11T07:48:05-0400
	Gary E. Marshall 137891

